Pular para o conteúdo principal

Modelos Atômicos


Demócrito
Por volta de 400 anos a.C. filósofo grego Demócrito sugeriu que a matéria não é contínua, isto é, ela é feita de minúsculas partículas indivisíveis. Essas partículas foram chamadas de átomos (a palavra átomo significa, em grego, indivisível)
Demócrito postulou que todas as variedades de matéria resultam da combinação de átomos de quatro elementos: terra, ar, fogo e água.
Demócrito baseou seu modelo na intuição e na lógica. No entanto foi rejeitado por um dos maiores lógicos de todos os tempos, o filosofo Aristóteles. Este reviveu e fortaleceu o modelo de matéria contínua, ou seja, a matéria como "um inteiro". Os argumentos de Aristóteles permaneceram até a Renascença.

Modelo de Dalton
Todo modelo não deve ser somente lógico, mas também consistente com a experiência. No século XVII, experiências demonstraram que o comportamento das substâncias era inconsistente com a idéia de matéria contínua e o modelo de Aristóteles desmoronou.
Em 1808, John Dalton, um professor inglês, propôs a idéia de que as propriedades da matéria podem ser explicadas em termos de comportamento de partículas finitas, unitárias. Dalton acreditou que o átomo seria a partícula elementar, a menor unidade de matéria.
Surgiu assim o modelo de Dalton: átomos vistos como esferas minúsculas, rígidas e indestrutíveis. Todos os átomos de um elemento são idênticos.

Modelo de Thomson
Em 1987, o físico inglês J.J. Thomson demonstrou que os raios catódicos poderiam ser interpretados como um feixe de partículas carregadas que foram chamadas de elétrons. A atribuição de carga negativa aos elétrons foi arbitrária.
Thomson concluiu que o elétron deveria ser um componente de toda matéria, pois observou que a relação q/m para os raios catódicos tinha o mesmo valor, qualquer que fosse o gás colocado na ampola de vidro.
Em 1989, Thomson apresentou o seu modelo atômico: uma esfera de carga positiva na qual os elétrons, de carga negativa, estão distribuídos mais ou menos uniformemente. A carga positiva está distribuída, homogeneamente, por toda a esfera.

Modelo nuclear (Rutherford)
Em 1911, Lord Rutherford e colaboradores (Geiger e Marsden) bombardearam uma lâmina metálica delgada com um feixe de partículas alfa, e observaram que atravessava a lâmina metálica sem sofrer desvio na sua trajetória (para cada 10.000 partículas alfa que atravessam sem desviar, uma era desviada).
Para explicar a experiência, Rutherford concluiu que o átomo não era uma bolinha maciça. Admitiu uma parte central positiva muito pequena mas de grande massa ("o núcleo") e uma parte envolvente negativa e relativamente enorme ("a eletrosfera ou coroa"). Se o átomo tivesse o tamanho do Estádio do Morumbi, o núcleo seria o tamanho de uma azeitona.
Surgiu assim o modelo nuclear do átomo.
O modelo de Rutherford é o modelo planetário do átomo, no qual os elétrons descrevem um movimento circular ao redor do núcleo, assim como os planetas se movem ao redor do sol.


Modelo de Bohr
O modelo planetário de Rutherford apresenta duas falhas:
•Uma carga negativa, colocada em movimento ao redor de uma carga positiva estacionária, adquire movimento espiralado em sua direção acabando por colidir com ela.
•Essa carga em movimento perde energia, emitindo radiação. Ora, o átomo no seu estado normal não emite radiação.
Em 1913, o físico dinamarquês Niels Bohr expôs uma idéia que modificou o modelo planetário do átomo.
•Um elétron num átomo só pode ter certas energias específicas, e cada uma destas energias corresponde a uma órbita particular. Quanto maior a energia do elétron, mais afastada do núcleo se localiza a sua órbita.
•Se o elétron receber energia ele pula para uma órbita mais afastada do núcleo. Por irradiação de energia, o elétron pode cair numa órbita mais próxima do núcleo. No entanto, o elétron não pode cair abaixo de sua órbita normal estável.
Mais tarde, Sommerfeld postulou a existência de órbitas não só circulares mas elípticas também.

Modelo orbital
Sabe-se hoje que é impossível determinar a órbita (trajetória) de um elétron. Pode-se determinar a probabilidade relativa de encontrar o elétron numa certa região ao redor do núcleo.
Imaginando uma pessoa munida de uma lanterna em um quarto escuro. Essa pessoa move-se ao acaso pelo quarto e de tempo em tempo ela acende e apaga a lanterna. Em um papel milimetrado vamos marcar a posição da pessoa. Quando a lanterna acende sabe-se onde a pessoa estava, mas não onde está agora. O papel milimetrado ficaria com o aspecto dado na figura ao lado.
Em outras palavras, é impossível determinar a trajetória de um elétron num átomo.
Surge então o modelo orbital.

Orbital
É a região de máxima probabilidade de encontrar o elétron.
Orbital é a região onde o elétron gasta a maior parte do seu tempo.





Bom Final De Semana!
Lauro

Postagens mais visitadas deste blog

FRACIONAMENTO DE MISTURAS

Misturas:
É todo o material constituído por duas ou mais substâncias puras. Estas são chamadas de componentes da mistura. A mistura pode ter uma ou mais fases, quando apresenta uma só fase é chamada homogênea, quando apresenta duas ou mais fases é chamada de heterogênea.
Misturas Homogêneas:
Misturas Homogêneas são aquelas que tem o mesmo aspecto em todos os seus pontos, isto é, são homogêneas, do ponto de vista visual, mesmo que observada com microscópio muitos potentes.
Misturas Heterogêneas:
Mistura de duas ou mais espécie químicas diferentes que não apresenta as mesmas propriedades em toda a sua extensão. Toda mistura heterogênea é um sistema polifásico.
Separação de Misturas:
É raro encontrarmos substâncias puras na natureza. Facilmente encontramos substâncias impuras, que são misturas de uma substância principal e outra que constituem a sua impureza, são processos de purificação das substâncias, são os processos de separação dos componentes das misturas. São chamados de análise ime…

Poluição do Ar e da Água

Poluição do ar
Fontes de poluição, efeito estufa, chuva ácida, combustíveis fósseis, conseqüências da poluição,
combustíveis não poluentes, poluição ambiental e poluição atmosférica

Indústrias: poluentes despejados no ar ( poluição industrial )
Introdução  A partir de meados do século XVIII, com a Revolução Industrial, aumentou muito a poluição do ar. A queima do carvão mineral despejava na atmosfera das cidades industriais européias, toneladas de poluentes. A partir deste momento, o ser humano teve que conviver com o ar poluído e com todas os prejuízos advindos deste "progresso". Atualmente, quase todas as grandes cidades do mundo sofrem os efeitos daninhos da poluição do ar. Cidades como São Paulo, Tóquio, Nova Iorque e Cidade do México estão na lista das mais poluídas do mundo. Geração da poluição  A poluição gerada nas cidades de hoje são resultado, principalmente, da queima de combustíveis fósseis como, por exemplo, carvão mineral e derivados do petróleo ( gasolina e diese…

Principios de Química Orgânica

Química Orgânica: é a parte da química que estuda os compostos do carbono "C".



História da Química Orgânica:
*Os antigos conheciam alguns processos da química orgânica tais como:
- A fermentação da uva e obtenção do vinho.
- A fabricação de vidros coloridos.
- Tinjimento de tecidos com extratos vegetais.
*A química como ciência teve inicio nos fins do século XVIII e inicio do século XIX. Com as leis ponderais (Lavoisier; Proust; Richiter; Dalton). Scheele, nesta época extraiu vários compostos orgânicos (contém carbono) dos organismos vivos (animais e vegetais), entre os quais: a) Obtenção do glicerol das gorduras, b) Ácido úrico dos cálculos renais , c) O ácido tartárico da uva.
*Verificou-se também que era impossível sintetizar um composto orgânico em laboratório (in vitro) isto é, fora dos organismos vivos.
*Bergman(1771) dividiu a química em duas grandes partes:
- Química Orgânica: parte da química que estudava os compostos extraídos dos seres vivos(animais e vegeta…